Edge Effect in LSST CCDs

How a charged guard rail affects the image. Discrepancies between lab and Phosim data.

Max Duncan – Duke University

Experiment Details/Intro

- Using Phosim
- Columns of 20 stars plotted:
- Distance measured from center of chip in pixels
- Edge ~2000 pixels
- Stars separated by 12 pixels
- All effects are switched off except for edge effect

Changing Guard Rail Charge

- Unsurprisingly, increasing charge increases maximum shift and effective distance.
- Charge measured in number of electrons.
- Negative input gives positive guard rail charge.

Maximum Shift vs. Distance From Center

SemiMajor/Minor Axes vs Distance to Edge

Area = $A*B*\pi$

Flux vs Distance

Color Dependence

Astrometric Shift (charge of 5e9):

Avg. penetration depth:

Lab Results

Curve similar to that in Phosim (previous slide)

Lab Data: O'Connor

Lab Results vs. Phosim Results

- Differences?
- Lab data far more narrow and steep
- May have different charge
- Guard rail may be shaped differently

Lab Analysis vs. My Analysis

- Astrometric Shift
- Compiled 30 minutes ago
- Lab Analysis style ≈ My style
 - Green and red lines almost match perfectly

Conclusion

- Within 50 pixels of edge, significant effect
- Discrepancies exist between lab data
- Next step:
 - Compare further with lab data
 - Conduct a write-up of all findings of summer